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Carbon monoxide is an important C1 source, and transition
metal-catalyzed carbonylation reactions have offered useful
methods for the synthesis of various carbonyl compounds
ranging from industrial processes to small-scale laboratory
preparations. The outstanding synthetic utility has stimulated
many attempts to develop a catalytic asymmetric carbonylation
reaction, yet only limited success has been achi@vdthis is

probably because carbon monoxide is among the most common ye

o-donorfr-acceptor ligands and, hence, is capable of displacing
chiral auxiliaries. In the last few years, major breakthroughs
have been achieved in this afeale have recently reported a
new rhodium(l)-catalyzed carbonylation reactide.( [4 + 1]
cycloaddition of vinylallenes with carbon monoxide)An
important feature of the reaction is thet-coordination of a
vinylallene in ans-cisconformation to rhodiumA) occurs prior

to the incorporation of carbon monoxide (Scheme 1). Face-
selection of the conjugated diene system can potentially be
provided by a rhodium catalyst modified by a chiral ligand,
leading to an enantioselective carbonylation reaction. This paper
describes the first example of catalytic asymmetricH41]
cycloaddition of vinylallenes with carbon monoxide which
furnishes chiral 5-substituted 2-alkylidene-3-cyclopentenones
with moderate to high enantioselectivity.

The catalyst precursors for the asymmetric carbonylation of
vinylallenes were prepared by treatment of a cationic complex
[Rh(cod}]PFs (5 mol %) with chiral diphosphine ligands (6
mol %), most of which are commercially available. The
resultant complexes were very effective catalysts for the
carbonylative [4+ 1] cycloaddition of vinylallenes at 6680
°C, affording 2-alkylidene-3-cyclopentenone in good chemical
yield. Preliminary screening of a series of chiral diphosphine
ligands validated the occurrence of face-selection by the rhodium
complexes, andR,R)-Me-DuPHOS [1,2-bis(2,5-dimethylphos-
phorano)benzeneas found to be the chiral ligand of choice.
Next, the solvent effect was examined usiRgR)-Me-DuPHOS
in the reaction of vinylallene1@) under 1 atm of carbon
monoxide. 1,2-Dimethoxyethane (DME) gave the best enan-
tioselectivity (42.3% ee, Table 1, entry 1) among tested solvents
(MeOH, toluene, THF, CkCl,, etc.). The reaction suffered,
however, from the formation of a conjugated trieBg¥which
was probably formed througfi-hydride elimination of the
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intermediate metallacyclopent-3-ene followed by reductive
elimination (Scheme 2). It was found that increase of CO
pressure suppressed the formatior8ofThis was understood
in terms of acceleration of migratory insertion of carbon
monoxide with metallacyclopent-3-en8)(in preference to

p-hydride elimination. Moreover, the enantioselectivity was also

affected by the CO pressure, and the reaction under 5 atm of
CO afforded2ain 64.5% ee (entry 2). Although the origin of
the enantioselectivity has not been fully elucidated, the stereo-
determining step at 5 atm of CO pressure appears to carry the
largest bias of the enantioface differentiation.

The standard set of the reaction conditions (5 atm of CO, in
DME, 60 °C, 6—14 h) was next applied to carbonylation of a
variety of vinylallenes, producing cyclopentenon2swith
moderate to good enantioselectivity in high isolated yield (Table
2). Itis a formidable task to gain stereocontrol over a substrate
lacking directive heteroatom functionalities using transition
metal complexes$. In this regard, it is noteworthy that a useful
level of asymmetric induction was attained with these substrates,
as listed in Table 2.

Finally, carbonylation of vinylallenes4] bearing an ester
group was examined. The cycloaddition proceeded at lower
temperatures giving remarkably improved selectivities, and

(6) No [4+ 1] cycloadduct potentially arising fro@was detected, being
suggestive of the superior reactivity of a vinylallene skeleton.

(7) For leading examples, see: (a) Jacobsen, E. N.; Markelungall,
W. S.; Schider, G.; Sharpless, K. B. Am. Chem. S04988 110, 1968~
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Table 2. Asymmetric [4+ 1] Cycloaddition of Vinylallenes)

entry 1 2 yield /% %e.e.?
1 1a 2a 87 64.5
(55)
2 7 C Me o 99 78.0
Me —( Me (59

Me 1b o 2

3 97 746
Y ' Me (59)

Me 1c

@ Enantioselectivity was determined by chiral HPLC analysis.

Table 3. Asymmetric [4+ 1] Cycloaddition of Vinylallenes4)

COzR [Rh(cod),]PFs- COR
(R,R)-Me-DuPHOS
./ Ph + CO —mM8M8M8M —>» Me upPh
ME‘( DME Me
Me 10 °C, 24-90 h O 5
4a R=Et
4b R =B CO,R
4c R=CH,Ph
NaBH;~CeCly e
> Hnuph
MeOH Me H
OH 6
6 R yield from4 (%) % eé
6a Et 93 92.0
6b Bu! 96 91.5
6¢c CH,Ph 94 95.0

@ Enantioselectivity was determined by chiral HPLC analysis.

particularly, the reaction of the benzyl esteic) at 10 °C
provided5 with the highest enantioselectivity of 95.0% ee (Table
3). Successive treatment of the cyclopentenorigswith
NaBH,—CeCE® caused exclusive 1,2-reduction of the carbonyl
group to produceis-cyclopentenols®) stereoselectively, prob-
ably via the hydride approach from the less-hindered side, in
high yield based on the starting vinylallen&$.( The absolute
configuration of the major enantiomer given B;R)-DUuPHOS

(8) Gemal, A. L.; Luche, J.-LJ. Am. Chem. Sod 981, 103 5454-
459.
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was determined to b8 by theH NMR study of theO-methyl
mandelate est&iderived frome.

We have found that a vinylallene having a substituent at the
vinylic terminus coordinates to rhodium(l) ing-fashion? On
the basis of#*-binding, the stereochemical outcome was
explained by assuming the following models for the formation
of a vinylallene-rhodium complex (Figure 1). Model | is
disfavored because of the two major repulsive steric interactions,
one between the methyl group on the phosphorano ring and
the R group and the other between another ligand methyl group
and the substrate methyl group at the allenic terminus. Model
Il is free from these interactions, with the vinylallene fitting
better to the chiral environment. The coordination depicted in
Model Il is consistent with the observed absolute stereochem-
istry of the product.

Asymmetric cycloaddition is a powerful tool to construct
complex chiral molecule¥. The asymmetric carbonylative [4
+ 1] cycloaddition documented herein adds a new promising
example which achieves enantioselectivities up to 95% ee. The
optimal selectivity is commensurate with those accomplished
in precedent highly effective systems like chiral Lewis acid-
promoted Diels-Alder type [4+2] cycloaddition.
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